
Problem Set 15 Solutions

Problem 15.1

(a) Estimate the diamagnetic susceptibility of a typical solid. (b) Using this, estimate the field strength
needed to levitate a frog, assuming a gradient that drops to zero across the frog. Express your answer in
teslas.

Solution: (a) The diamagnetic susceptibility is given by Equation (14.15) from the page 234 :

χm = −µ0
q2Zr2

4meV

where µ0 = 4π × 10−7 H/m is the permeability of free space, q = e = 1.602 × 10−19 C is the electron
charge, me = 9.11× 10−31 kg is the electron mass, Z is the atomic number, r is the atomic radius, and
V is the atomic volume.

Let’s estimate typical values for a solid:

• Atomic number Z ≈ 20

• Atomic radius r ≈ 1× 10−10 m

• Atomic volume V ≈ 1.5× 10−29 m3 (e.g., based on typical solid density ∼ 5000 kg/m3 and atomic
mass ∼ 50 amu)

Plugging these values in:

χm ≈ −(4π × 10−7 H/m)
(1.602× 10−19 C)2 × 20× (1× 10−10 m)2

4× (9.11× 10−31 kg)× (1.5× 10−29 m3)

χm ≈ − (1.257× 10−6)× (2.566× 10−38)× 20× (10−20)

(4)× (9.11× 10−31)× (1.5× 10−29)

χm ≈ −6.45× 10−63

5.47× 10−59
≈ −1.18× 10−4

This estimate is somewhat larger than typical values (e.g., Au is −3.4 × 10−5, water is −9.05 × 10−6).
The simplified model and estimated parameters contribute to the difference. Let’s use a typical value
χm ≈ −1× 10−5 for estimations.

(b) To levitate a frog, the magnetic force must balance gravity. The force on a material with volume
Vfrog in a magnetic field gradient is given by Equation (14.7) :

Fmag = −Vfrogµ0χmH
dH

dz

Using B = µ0(H + M) ≈ µ0H for diamagnetic materials (since M = χmH and |χm| ≪ 1), we have
H ≈ B/µ0. The force becomes:

Fmag = −Vfrogµ0χm
B

µ0

d(B/µ0)

dz
= −Vfrog

χm

µ0
B
dB

dz

For levitation, Fmag = Fgravity = mfrogg = ρfrogVfrogg.

−Vfrog
χm

µ0
B
dB

dz
= ρfrogVfrogg

Since χm is negative for diamagnetic materials, the force is directed opposite to the gradient, i.e., upwards
if the field strength decreases upwards.

−χm

µ0
B
dB

dz
= ρfrogg

We are told the gradient drops to zero across the frog. Let the size of the frog be L. We can approximate
the gradient as dB

dz ≈ B
L .

−χm

µ0
B
B

L
= ρfrogg =⇒ B2 = −µ0Lρfrogg

χm
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Let’s use the susceptibility of water for the frog: χm ≈ −9.05× 10−6. Assume frog density ρfrog ≈ 1000
kg/m3 and size L ≈ 0.1 m.

B2 = − (4π × 10−7 T ·m/A)× (0.1m)× (1000 kg/m
3
)× (9.8m/s

2
)

−9.05× 10−6

B2 ≈ 1.23× 10−3

9.05× 10−6
≈ 136T2

B ≈
√
136T ≈ 11.7T

This is a very strong magnetic field, achievable with specialized magnets. The famous frog levitation
experiment at Radboud University used about 16 T.

Problem 15.2

Estimate the size of the direct magnetic interaction energy between two adjacent free electrons in a solid,
and compare this to size of their electrostatic interaction energy. Remember that the field of a magnetic
dipole m is given by Eq. (14.42).

B⃗ =
µ0

4π

[
3x̂(x̂ · m⃗)− m⃗

|x⃗|3

]
(14.42)

Solution: The magnetic moment of a free electron is the Bohr magneton, m = µB = 9.274× 10−24

J/T (Eq. 14.19). Let two electrons be separated by a typical interatomic distance r ≈ 0.2 nm = 2×10−10

m.
Magnetic Interaction Energy: The energy of a magnetic dipole m⃗2 in the magnetic field B⃗1

created by dipole m⃗1 is Emag = −m⃗2 · B⃗1. Let’s assume the electron spins (magnetic moments) are
parallel and aligned along the z-axis, m⃗1 = m⃗2 = µBspẑ. Let the separation vector also be along the
z-axis, x⃗ = rẑ, so x̂ = ẑ. Using Eq. (14.42):

B⃗1 =
µ0

4π

[
3ẑ(ẑ · (µB ẑ))− µB ẑ

r3

]
=

µ0

4π

[
3ẑ(µB)− µB ẑ

r3

]
=

µ0

4π

2µB ẑ

r3

The interaction energy is:

Emag = −(µB ẑ) ·
(
µ0

4π

2µB ẑ

r3

)
= −µ0µ

2
B

2πr3

Emag = − (4π × 10−7 T ·m/A)× (9.274× 10−24 J/T)2

2π × (2× 10−10 m)3

Emag = − (2× 10−7)× (8.60× 10−47)

(8× 10−30)
= −1.72× 10−53

8× 10−30
≈ −2.15× 10−24 J

Converting to eV: Emag ≈ −2.15× 10−24 J/(1.602× 10−19 J/eV) ≈ −1.3× 10−5 eV.
Electrostatic Interaction Energy: The electrostatic potential energy between two electrons is:

Eelec =
1

4πϵ0

e2

r

where ϵ0 = 8.854× 10−12 F/m is the permittivity of free space and e = 1.602× 10−19 C is the electron
charge.

Eelec =
1

4π(8.854× 10−12 F/m)

(1.602× 10−19 C)2

2× 10−10 m

Eelec = (8.988× 109 N ·m2/C2)
2.566× 10−38 C2

2× 10−10 m
≈ 1.15× 10−18 J

Converting to eV: Eelec ≈ 1.15× 10−18 J/(1.602× 10−19 J/eV) ≈ 7.2 eV.
Comparison: The ratio of the magnitudes is:

|Emag|
|Eelec|

=
2.15× 10−24 J

1.15× 10−18 J
≈ 1.9× 10−6

The direct magnetic interaction energy between adjacent electrons is about six orders of magnitude
smaller than their electrostatic interaction energy. This supports the statement in the text (page 237)
that magnetic forces are typically much smaller than electrostatic interactions and that the latter are
responsible for phenomena like ferromagnetism (via the exchange interaction).
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Problem 15.3

Using the equation for the energy in a magnetic field, describe why: (a) A permanent magnet is attracted
to an unmagnetized ferromagnet. (b) The opposite poles of permanent magnets attract each other.

Solution: Systems tend to minimize their potential energy. The energy associated with magnetic
fields can be considered. One relevant expression is the energy stored in the magnetic field, E =
1
2µ

∫
B2dV (Eq. 14.33), or the energy density U = 1

2 B⃗ · H⃗ (page 231). Another view is the potential

energy change when introducing a material into a field, ∆E = 1
2V µ0χmH2 (page 2[Eq. 14.6), leading to

a force F = −∇(∆E).
(a) Permanent magnet attracting an unmagnetized ferromagnet: A ferromagnet has a very

high relative permeability µr ≫ 1, meaning a large positive magnetic susceptibility χm = µr − 1 > 0.
When an unmagnetized ferromagnet is placed near a permanent magnet, the external field H⃗ext from the
permanent magnet magnetizes the ferromagnet, inducing a magnetization M⃗ within it, largely parallel
to H⃗ext. The potential energy change upon introducing the material is ∆E = 1

2V µ0χmH2[cite: 17].
Since χm > 0 for a ferromagnet, the energy is lower (∆E is more negative if we consider the energy
difference relative to vacuum) when H is larger. The system will move to minimize this energy, meaning
the ferromagnet will move towards regions of stronger field H, i.e., towards the permanent magnet.
Alternatively, using the force equation F = −V µ0χmH dH

dz (Eq. 14.7), since χm > 0, the force is in

the direction of increasing field strength (H dH
dz > 0). This means the ferromagnet is pulled towards the

permanent magnet where the field is stronger. Also, considering the field energy E =
∫

1
2 B⃗ · H⃗dV [cite:

10], the presence of a high permeability material (µ ≫ µ0) concentrates the magnetic field lines. The
total energy is minimized when the high-µ material occupies the region where the field created by the
permanent magnet is strongest, leading to an attractive force.

(b) Opposite poles of permanent magnets attract: Consider two permanent magnets as dipoles

m⃗1 and m⃗2. The potential energy of interaction is E = −m⃗2 · B⃗1, where B⃗1 is the field produced by
magnet 1 at the location of magnet 2. Magnetic field lines point away from North poles and towards
South poles. If the North pole of magnet 1 faces the South pole of magnet 2:

• The field B⃗1 near the North pole points away from magnet 1.

• The dipole moment m⃗2 associated with magnet 2 points from its South pole towards its North pole
(internal convention) or represents the pole strength orientation (external field perspective). Let’s
consider the force perspective: the South pole is attracted to the North pole.

• Alternatively, using potential energy: Let m⃗1 point along +z (North pole up) and m⃗2 point along

−z (South pole up, North pole down). The field B⃗1 above the North pole points generally along

+z. The dipole m⃗2 points along −z. The energy E = −m⃗2 · B⃗1 = −(−µB ẑ) · (B1ẑ) = µBB1. This
seems wrong, suggesting repulsion.

Let’s re-evaluate E = −m⃗ · B⃗. Consider the interaction energy between poles. A simpler view: The field
lines originating from the North pole of magnet 1 enter the South pole of magnet 2. The configuration
where the field lines flow easily between the magnets corresponds to lower field energy in the surrounding
space compared to when like poles face each other, where field lines must curve sharply and occupy more
volume. The system seeks to minimize the stored field energy, which occurs when opposite poles are
brought together, resulting in attraction. Using E = −m⃗2 · B⃗1: If a South pole of magnet 2 (where field

lines enter) is placed in the field B⃗1 from the North pole of magnet 1 (where field lines exit), the field

B⃗1 and the effective moment m⃗2 (pointing towards the North pole of magnet 2) are roughly anti-aligned

near the poles. E = −m⃗2 · B⃗1. If m⃗2 points opposite to B⃗1, the dot product is negative, making the
energy E negative. Minimizing energy means making E as negative as possible, which happens when
the distance is smallest. Thus, opposite poles attract.

Problem 15.4

Estimate the saturation magnetization for iron at 0 K.
Solution: Saturation magnetization MS occurs when all atomic magnetic moments in the material

are aligned parallel to the external field (page 239). It is the maximum possible magnetic moment per
unit volume.

MS = n×matom

where n is the number density of atoms and matom is the magnetic moment per atom.
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For iron (Fe):

• Crystal structure: Body-Centered Cubic (BCC)

• Lattice constant: a = 0.287 nm = 2.87× 10−10 m (standard value)

• Atoms per unit cell: 2

• Volume of unit cell: Vcell = a3 = (2.87× 10−10 m)3 ≈ 2.36× 10−29 m3

• Number density of atoms: n = atoms
cell /Vcell = 2/(2.36× 10−29 m3) ≈ 8.47× 1028 atoms/m

3

• Magnetic moment per Fe atom: matom ≈ 2.2µB (standard experimental value at 0 K, related to
unpaired electron spins). µB = 9.274× 10−24 J/T is the Bohr magneton (page 235, Eq. 14.19).

• matom = 2.2× (9.274× 10−24 J/T) ≈ 2.04× 10−23 J/T (or A·m2)

Now, calculate the saturation magnetization:

MS = n×matom = (8.47× 1028 m−3)× (2.04× 10−23 A ·m2)

MS ≈ 1.73× 106 A/m

The experimental value for saturation magnetization of iron at low temperatures is indeed around 1.7×106

A/m.

Problem 15.5

(a) Show that the area enclosed in a hysteresis loop in the (B,H) plane is equal to the energy dissipated
in going around the loop. (b) Estimate the power dissipated if 1 kg of iron is cycled through a hysteresis
loop at 60 Hz; the coercivity of iron is 4× 103A/m.

Solution: (a) The incremental work done per unit volume by an external source to change the

magnetic state of a material by dB⃗ in the presence of a field H⃗ is dW = H⃗ · dB⃗. This is the energy
supplied to the system per unit volume. Over a full cycle of the hysteresis loop, the net work done per
unit volume is the integral around the closed loop:

Wcycle =

∮
H⃗ · dB⃗

If we consider B and H to be scalar quantities aligned in the same direction, as is typical for a hysteresis
loop measurement:

Wcycle =

∮
H dB

This integral represents the area enclosed by the hysteresis loop in the B versus H plane. Since the
material returns to its initial state after one cycle, this net work done on the system must be dissipated
as heat, representing the energy loss due to hysteresis.

(b) The power dissipated is the energy lost per cycle multiplied by the frequency f .

P = Wcycle,total × f = (Wcycle,per volume ×Volume)× f

The energy loss per unit volume per cycle is the area of the B-H loop (Wcycle,per volume =
∮
H dB).

We need to estimate this area. A rough estimate of the area of the hysteresis loop is Area ≈ 4BRHC ,
where BR is the remanent flux density and HC is the coercivity. Given HC = 4 × 103 A/m. We need
BR. BR = µ0(HR + MR). At H = 0, BR ≈ µ0MR. The remanent magnetization MR is typically a
significant fraction of the saturation magnetization MS . Let’s assume MR ≈ 0.8MS . From Problem
15.4, MS ≈ 1.73 × 106 A/m. MR ≈ 0.8 × (1.73 × 106 A/m) ≈ 1.38 × 106 A/m. BR ≈ µ0MR =
(4π × 10−7 T ·m/A)× (1.38× 106 A/m) ≈ 1.74 T.

Area estimate:

Wcycle,per volume ≈ 4BRHC = 4× (1.74T)× (4× 103 A/m) ≈ 27840 J/m
3

(Note: T ·A/m = (N/(A ·m)) · (A/m) = N/m2 = Pa = J/m3)
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Now, find the volume of 1 kg of iron. Density of iron ρFe = 7874 kg/m3.

Volume =
Mass

Density
=

1 kg

7874 kg/m
3 ≈ 1.27× 10−4 m3

Total energy dissipated per cycle:

Wcycle,total = (27840 J/m
3
)× (1.27× 10−4 m3) ≈ 3.54 J

Power dissipated at f = 60 Hz:

P = Wcycle,total × f = (3.54 J)× (60 s−1) ≈ 212W

So, about 212 Watts are dissipated as heat.

Problem 15.6

Approximately what current would be required in a straight wire to be able to erase a γ−Fe2O3 recording
at a distance of 1 cm?

Solution: To erase a magnetic recording, the applied magnetic field H must be at least equal to the
coercivity HC of the magnetic medium. For gamma ferric oxide (γ−Fe2O3), the coercivity is HC = 300
Oe (page 241). First, convert Oersteds (Oe) to A/m using the conversion factor from Equation (14.4)
(page 232): 1A

m = 4π
1000 Oe.

HC = 300Oe× 1A/m

(4π/1000)Oe
=

300× 1000

4π
A/m ≈ 23870A/m

The magnetic field strength H at a radial distance r from a long straight wire carrying current I is given
by Ampere’s Law:

H =
I

2πr

We need to find the current I such that H ≥ HC at r = 1 cm = 0.01 m.

I

2πr
= HC

I = 2πrHC

I = 2π × (0.01m)× (23870A/m)

I ≈ 1500A

A current of approximately 1500 Amperes would be required in a straight wire to generate a field equal
to the coercivity of γ − Fe2O3 at a distance of 1 cm. This is a very large current, highlighting that
specialized recording heads producing focused fields are necessary for magnetic recording and erasure.
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